Dynamical Systems and Statistical Mechanics From the Seminar on Statistical Physics Held at Moscow State University by Ya. G. Sinaĭ
Dynamical systems and statistical mechanics have been developing in close interaction during the past decade, and the papers in this book attest to the productiveness of this interaction. The first paper in the collection contains a new result in the theory of quantum chaos, a burgeoning line of inquiry which combines mathematics and physics and which is likely in time to produce many new connections and applications. Another paper, related to the renormalization group method for the study of maps of the circle with singularities due to a jump in the derivative, demonstrates that the fixed point of the renormgroup can in this case be sufficiently described. In certain situations, the renormgroup methods work better than the traditional KAM method. Other topics covered include: thermodynamic formalism for certain infinite-dimensional dynamical systems, numerical simulation of dynamical systems with hyperbolic behaviour, periodic points of holomorphic maps, the theory of random media, statistical properties of the leading eigenvalue in matrix ensembles of large dimension, spectral properties of the one-dimensional Schrodinger operator. This volume will appeal to many readers, as it covers a broad range of topics and presents a view of some of the frontier research in the Soviet Union today.