A Most Incomprehensible Thing Notes Towards a Very Gentle Introduction to the Mathematics of Relativity
A straightforward, enjoyable guide to the mathematics of Einstein's relativity To really understand Einstein's theory of relativity – one of the cornerstones of modern physics – you have to get to grips with the underlying mathematics. This self-study guide is aimed at the general reader who is motivated to tackle that not insignificant challenge. With a user-friendly style, clear step-by-step mathematical derivations, many fully solved problems and numerous diagrams, this book provides a comprehensive introduction to a fascinating but complex subject. For those with minimal mathematical background, the first chapter gives a crash course in foundation mathematics. The reader is then taken gently by the hand and guided through a wide range of fundamental topics, including Newtonian mechanics; the Lorentz transformations; tensor calculus; the Einstein field equations; the Schwarzschild solution (which gives a good approximation of the spacetime of our Solar System); simple black holes, relativistic cosmology and gravitational waves. Special relativity helps explain a huge range of non-gravitational physical phenomena and has some strangely counter-intuitive consequences. These include time dilation, length contraction, the relativity of simultaneity, mass-energy equivalence and an absolute speed limit. General relativity, the leading theory of gravity, is at the heart of our understanding of cosmology and black holes. "I must observe that the theory of relativity resembles a building consisting of two separate stories, the special theory and the general theory. The special theory, on which the general theory rests, applies to all physical phenomena with the exception of gravitation; the general theory provides the law of gravitation and its relations tothe other forces of nature." – Albert Einstein, 1919 Understand even the basics of Einstein's amazing theory and the world will never seem the same again. Contents: Preface Introduction 1 Foundation mathematics 2 Newtonian mechanics 3 Special relativity 4 Introducing the manifold 5 Scalars, vectors, one-forms and tensors 6 More on curvature 7 General relativity 8 The Newtonian limit 9 The Schwarzschild metric 10 Schwarzschild black holes 11 Cosmology 12 Gravitational waves Appendix: The Riemann curvature tensor Bibliography Acknowledgements January 2019. This third edition has been revised to make the material even more accessible to the enthusiastic general reader who seeks to understand the mathematics of relativity.