Adaptive Filter Theory
Haykin examines both the mathematical theory behind various linear adaptive filters with finite-duration impulse response (FIR) and the elements of supervised neural networks. This edition has been updated and refined to keep current with the field and develop concepts in as unified and accessible a manner as possible. It: introduces a completely new chapter on Frequency-Domain Adaptive Filters; adds a chapter on Tracking Time-Varying Systems; adds two chapters on Neural Networks; enhances material on RLS algorithms; strengthens linkages to Kalman filter theory to gain a more unified treatment of the standard, square-root and order-recursive forms; and includes new computer experiments using MATLAB software that illustrate the underlying theory and applications of the LMS and RLS algorithms.