Amplification of Nonlinear Strain Waves in Solids
This book treats two problems simultaneously: sequential analytical consideration of nonlinear strain wave amplification and selection in wave guides and in a medium; demonstration of the use of even particular analytical solutions to nonintegrable equations in a design of numerical simulation of unsteady nonlinear wave processes. The text includes numerous detailed examples of the strain wave amplification and selection caused by the influence of an external medium, microstructure, moving point defects, and thermal phenomena. The main features of the book are: (1) nonlinear models of the strain wave evolution in a rod subjected by various dissipative/active factors; (2) an analytico-numerical approach for solutions to the governing nonlinear partial differential equations with dispersion and dissipation. This book is essential for introducing readers in mechanics, mechanical engineering, and applied mathematics to the concept of long nonlinear strain wave in one-dimensional wave guides. It is also suitable for self-study by professionals in all areas of nonlinear physics. Contents: Basic Concepts; Mathematical Tools for the Governing Equations Analysis; Strain Solitary Waves in an Elastic Rod; Amplification of Strain Waves in Absence of External Energy Influx; Influence of Dissipative (Active) External Medium; Bulk Active or Dissipative Sources of the Amplification and Selection. Readership: Graduate students, academics and researchers in mechanics, nonlinear science and mechanical engineering.