Decision Technologies for Financial Engineering
This volume selects the best contributions from the Fourth International Conference on Neural Networks in the Capital Markets (NNCM). The conference brought together academics from several disciplines with strategists and decision makers from the financial industries. The various chapters present and compare new techniques from many areas including data mining, information systems, machine learning, and statistical artificial intelligence. The volume focuses on evaluating their usefulness for problems in computational finance and financial engineering. Applications — risk management; asset allocation; dynamic trading and hedging; forecasting; trading cost control. Markets — equity; foreign exchange; bond; commodity; derivatives; Approaches — data mining; statistical AI; machine learning; Monte Carlo simulation; bootstrapping; genetic algorithms; nonparametric methods; fuzzy logic. The chapters emphasizes in-depth and comparative evaluation with established approaches. Contents:Decision Technologies:Optimization of Trading Systems and Portfolios (J E Moody & L Z Wu)Nonlinear versus Linear Techniques for Selecting Individual Stocks (S Mahfoud et al.)Soft Prediction of Stock Behavior (Y Baram)Risk Management:Validating a Connectionist Model of Financial Diagnosis (P E Pedersen)Neural Networks for Risk Analysis in Stock Price Forecasts (M Klenin)Optimizing Neural Network Classifiers for Bond Rating (A N Skurikhin & A J Surkan)Statistical Learning for Financial Problems:Forecasting Volatility Mispricing (P J Bolland & A N Burgess)Intraday Modeling of the Term Structure of Interest Rates (J T Connor et al.)Modeling of Nonstationary Financial Time Series by Nonparametric Data Selection (G Deco et al.)Foreign Exchange Trading and Analysis:Principal Components Analysis for Modeling Multi-Currency Porfolios (J Utans et al.)Quantization Effects and Cluster Analysis on Foreign Exchange Rates (W M Leung et al.)A Computer Simulation of Currency Market Participantsand other papers Readership: Practitioners and academics who are interested in developments and applications of data mining to finance. keywords: