Differential Equations and Asymptotic Theory in Mathematical Physics
This lecture notes volume encompasses four indispensable mini courses delivered at Wuhan University with each course containing the material from five one-hour lectures. Readers are brought up to date with exciting recent developments in the areas of asymptotic analysis, singular perturbations, orthogonal polynomials, and the application of Gevrey asymptotic expansion to holomorphic dynamical systems. The book also features important invited papers presented at the conference. Leading experts in the field cover a diverse range of topics from partial differential equations arising in cancer biology to transonic shock waves. The proceedings have been selected for coverage in: • Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings) • Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings) • CC Proceedings — Engineering & Physical Sciences Contents:Lectures on Orthogonal Polynomials (M E H Ismail)Gevrey Asymptotics and Applications to Holomorphic Ordinary Differential Equations (J-P Ramis)Spikes for Singularly Perturbed Reaction-Diffusion Systems and Carrier's Problem (M J Ward)Five Lectures on Asymptotic Theory (R S C Wong)A Perturbation Model for the Growth of Type III-V Compound Crystals (C S Bohun et al.)Asymptotic Behaviour of the Trace for Schrödinger Operator on Irregular Domains (H Chen & C Yu)Limitations and Modifications of Black-Scholes Model (L S Jiang & X M Ren)Exact Boundary Controllability of Unsteady Flows in a Network of Open Canals (T T Li)Hierarchy of Partial Differential Equations and Fundamental Solutions Associated with Summable Formal Solutions of a Partial Differential Equations of non Kowalevski Type (M Miyake & K Ichinobe)On the Singularities of Solutions of Nonlinear Partial Differential Equations in the Complex Domain, II (H Tahara)Identifying Corrosion Boundary by Perturbation Method (Y J Tan & X X Chen)Existence and Stability of Lamellar and Wriggled Lamellar Solutions in the Diblock Copolymer Problem (J C Wei) Readership: Graduate students, researchers, academics and lecturers in mathematical physics. Keywords:Asymptotic Theory;Special Functions;Orthogonal Polynomials;Singular Perturbations;Reaction Diffusion Equations;Gevrey Asymptotics;Stationary Phase Approximation;WKB Method