Knots and Physics
In this second edition, the following recent papers have been added: “Gauss Codes, Quantum Groups and Ribbon Hopf Algebras”, “Spin Networks, Topology and Discrete Physics”, “Link Polynomials and a Graphical Calculus” and “Knots Tangles and Electrical Networks”. An appendix with a discussion on invariants of embedded graphs and Vassiliev invariants has also been included. This book is an introduction to knot and link invariants as generalized amplitudes (vacuum–vacuum amplitudes) for a quasi-physical process. The demands of knot theory, coupled with a quantum statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This has the advantage of providing very direct access to the algebra and to the combinatorial topology, as well as the physical ideas. This book is divided into 2 parts: Part I of the book is a systematic course in knots and physics starting from the ground up. Part II is a set of lectures on various topics related to and sometimes based on Part I. Part II also explores some side-topics such as frictional properties of knots, relations with combinatorics and knots in dynamical systems. Contents:Physical KnotsStates and the Bracket PolynomialThe Jones Polynomial and Its GeneralizationsBraids and the Jones PolynomialFormal Feynman Diagrams, Bracket as a Vacuum-Vacuum Expectation and the Quantum Group SL(2)qYang-Baxter Models for Specializations of the Homfly PolynomialThe Alexander PolynomialKnot-Crystals — Classical Knot Theory in Modern GuiseThe Kauffman PolynomialThree Manifold Invariants from the Jones PolynomialIntegral Heuristics and Witten' s InvariantsThe Chromatic PolynomialThe Potts Model and the Dichromatic PolynomialThe Penrose Theory of Spin NetworksKnots and Strings — Knotted StringsDNA and Quantum Field TheoryKnots in Dynamical Systems — The Lorenz Attractorand other papers Readership: Physicists, mathematical physicists and mathematicians. keywords: Reviews of the First Edition: “It is an attractive book for physicists with profuse and often entertaining illustrations … proofs … seldom heavy and nearly always well explained with pictures… succeeds in infusing his own excitement and enthusiasm for these discoveries and their potential implications.” Physics Today “… here is a gold mine where, with care and patience, one should get acquainted with a beautiful subject under the guidance of a most original and imaginative mind.” Mathematical Reviews