Geometry of Group Representations Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference Held July 5-11, 1987 with Support from the National Science Foundation
The representations of a finitely generated group in a topological group $G$ form a topological space which is an analytic variety if $G$ is a Lie group, or an algebraic variety if $G$ is an algebraic group. The study of this area draws from and contributes to a wide range of mathematical subjects: algebra, analysis, topology, differential geometry, representation theory, and even mathematical physics. In some cases, the space of representations is the object of the study, in others it is a tool in a program of investigation, and, in many cases, it is both. Most of the papers in this volume are based on talks delivered at the AMS-IMS-SIAM Summer Research Conference on the Geometry of Group Representations, held at the University of Colorado in Boulder in July 1987.The conference was designed to bring together researchers from the diverse areas of mathematics involving spaces of group representations. In keeping with the spirit of the conference, the papers are directed at nonspecialists, but contain technical developments to bring the subject to the current research frontier. Some of the papers include entirely new results. Readers will gain an understanding of the present state of research in the geometry of group representations and their applications.